
Vocalware API Reference

Table of Contents

INTRODUCTION..2

SELECT THE API FLAVOR TO USE...2

ADDITIONAL RESOURCES..3

THE JAVASCRIPT API...3

INTRODUCTION...3
PROGRAMMING FOR MOBILE...4
USING YOUR EMBED CODE..5

JavaScript Instructions..5
PLAYBACK CONTROL FUNCTIONS..5

sayText (txt,voice,lang,engine,[effect], [effLevel])..5
setPlayerVolume (level)...6
stopSpeech ()..7
freezeToggle ()...7
setStatus (interruptMode,progressInterval,reserved1,reserved2)...............................7

STATUS CALLBACK FUNCTIONS...8
Setting up Vocalware Callback Functions in your HTML page:................................8
vw_apiLoaded (apiID)...8
vw_audioProgress (percentPlayed)...9
vw_talkStarted ()..9
vw_talkEnded ()...9
vw_audioStarted ()...9
vw_audioEnded ()..10
vw_apiError (errCode, errDesc)...10

THE HTTP REST API..11

THE HTTP GEN REQUEST...11
SESSION VERIFICATION..12
EXAMPLE..13
THE CREATE API REQUEST...13
THE GET STREAM BALANCE REQUEST..14
GENERATING THE CHECKSUM..14

APPENDIX A: LANGUAGES AND VOICES...16

 APPENDIX B: ERROR HANDLING & CODES...22

© 2023 Oddcast Inc. 1 Version 2.2 12/13/2023

Introduction

The Vocalware API enables you to use our cloud based Text-To-Speech service, to
generate & play audio in real-time within your online application. By the term “online
application” we refer to any online program, including: web pages, or native code apps
on either desktop, server or mobile device. The only requirement is that your application
has access to an internet connection fast enough to stream 48kbps audio.

The Vocalware API allows you to generate audio and control audio playback. The API
comes in two flavors: JavaScript/HTML5, and HTTP-REST - so it can be easily
incorporated into any application. Whether your application runs in-browser or
standalone, on mobile, desktop or server - one of our API flavors will work for you.

The Vocalware API supports TTS in over 30 languages, with several voices available in
each. The API allows you to specify the language and voice to use, as well as optional
audio effects such as pitch, echo, etc. A list of languages and voices & their respective
IDs to use in the API is available in Appendix A.

Select the API Flavor to Use

The API comes in two flavors:
1. JavaScript/HTML5 - also referred to as the JavaScript API
2. HTTP-REST - also referred to as the HTTP API

To proceed, you should first identify the section of this document that refers to the API
flavor you plan to use. The JavaScript API is covered by the first section of this guide.
The HTTP API is covered by the second section.

How to select the API flavor that’s right for you? Here are several rules of thumb:
 in your web pages – use the JavaScript API (supports mobile browsers as well)
 in your standalone (out of browser) app, including mobile app - use the HTTP API
 on your server – use the HTTP API

Note: Whether mobile, desktop or server, the decision boils down to whether your
intended use is within a web browser or not. If it is, use the JS API. If it is not – use the
HTTP API.

© 2023 Oddcast Inc. 2 Version 2.2 12/13/2023

Additional Resources

If you have any questions, or run into difficulty when trying to use any of our APIs,
please check out our support pages, where you will be able to access:
 Frequently Asked Questions covering a large number of issues.
 API examples for each of the API functions listed here, including full source code,

covering both Javascript and HTTP APIs.
 Send a note to our support team.

The JavaScript API

Introduction

The JavaScript API operates by way of an invisible client side code object (“Agent”), that
your web page loads & can then access via the API functions.

Note: This works transparently on both Desktop and Mobile browsers, as the
client side Agent code automatically adapts to the client platform’s capabilities.

The API supports TTS audio generation as well as playback control functionality. The
interface consists of a set of client side JavaScript calls, and does not require you to make
any call to our servers, as the client side API encapsulates all interaction with the
Vocalware servers.

Tip: The simplest way to handle playback of the generated audio, is to
control it via the documented API functions. Using these high level
functions makes direct access to the audio data unnecessary.

To get started with the JS API you need to:
a. Create a JS API object in your account’s My APIs page. Copy the 'embed code'

unique to your API object – and paste it into the BODY section of your page.
b. Specify in your ‘Security Settings’ page the domain (or several domains) in which

this API is to operate.
c. Implement the vw_apiLoaded callback in your web page to receive notice that

your API is ready.

Important caveats / pitfalls to avoid -
 Your embed code is specific to your account and for your protection will allow

playback only from the domain(s) you specify. Specifying a domain is
mandatory. Your API will not function without it.

© 2023 Oddcast Inc. 3 Version 2.2 12/13/2023

 The “vw_apiLoaded” status callback is dispatched when the API is ready. It is
therefore advisable to implement the “vw_apiLoaded” callback – and avoid
calling any API function prior to receiving confirmation that loading has
completed. API functions work only after the API has completed loading.

Note that your embed code must be placed within the BODY section of the HTML page,
and will not work otherwise! See additional detail below in “Using your Embed Code”.

In the next sections you will find instructions and code examples explaining how to use
your embed code as well as a listing of the API function calls.

Programming for Mobile

The JavaScript API operates on ‘desktop’ as well as mobile browsers (the term ‘desktop’
is used here to refer to non-mobile client side environments, such as desktop and laptop
computers of all types). This means that you need not do anything special in order to
support mobile functionality in your web pages when using the Vocalware JavaScript
API. That said, there are a couple of differences between mobile and desktop that you
should be aware of.

The JavaScript API is fully compatible with all major mobile browsers – and with two
exceptions will function in the same way within mobile browsers as it will on desktop
browsers. One exception is with the function ‘setPlayerVolume’ – which does not have
any effect in some mobile browsers – but there is no harm in making the call.

"Play-on-load": Another important difference is that on mobile browsers, the first call to
the API must always be user driven (e.g. user clicks on a button). This restriction
prevents the web page from automatically speaking to the viewer unprompted. Trying to
do so will not cause an error – but will simply not work.
This same restriction is being introduced into desktop browsers as well, where the
implementation is not uniform, or permanent. Some browsers will allow play-on-load for
a user who has visited a page before and had interacted with media on the page. The
policies enacted by browsers in this regard are both evolving & undocumented, so there
is no point in attempting to describe them. The main takeaways here should be:

 it's ok to try to play the audio as the page loads (verify that API has loaded first!)
 you should be aware that such playback may or may not be blocked, and will

always be blocked on mobile.
 no need for special attention to coding for mobile browsers - the API operates the

same across browsers and devices.

© 2023 Oddcast Inc. 4 Version 2.2 12/13/2023

Using your Embed Code

The embed code is a code segment unique to your account, or more specifically to an API
Object within your account. Instructions and examples below explain how to incorporate
the embed code.

JavaScript Instructions

Locate the embed code in your account in the "My APIs" section, and copy it. Paste your
embed code into your HTML page’s BODY section. Needless to say that your page must
have a BODY section to be able to fulfill this requirement… This instruction applies to
mobile as well as non-mobile web pages.
The exact location within your HTML is not significant, though it is best not to include it
within FORM brackets or other nested HTML structures.

Use the Javascript API functions defined below.

Error Handling

All errors are written to the console. 'sayText' errors, if encountered, are also returned
via callback (in addition to being written to the console. Please see documentation for
vh_apiError for more details.

This API is designed to fail silently if an error is encountered, with the realization that it
is not helpful to display or expose an error scenario to your web page visitors.

Playback Control Functions

sayText (txt,voice,lang,engine,[effect], [effLevel])

Real-time (dynamic) Text-To-Speech (TTS).

Note: This function will work only within a licensed domain for the account. Domain
specific licensing is a security measure. If playback is attempted within a domain that is
not specifically licensed for the account, this call will generate an error.

Arguments:
txt Required. String - The text to speak. Most languages are

limited to 600 characters. The exceptions are Chinese &
Japanese which are limited to 150 characters. A longer text
string will be truncated.

© 2023 Oddcast Inc. 5 Version 2.2 12/13/2023

voice Required. Integer – Voice ID, as listed in Appendix A.
lang Required. Integer – Language ID, as listed in Appendix A.
engine Required. Integer – Voice Family ID. See languages and

voices listed listed in Appendix A.
effect Optional. Character. Audio effect – one of:

 “D” – Duration levels: -3, -2, -1, 1, 2, 3

 “P” – Pitch levels: -3, -2, -1, 1, 2, 3

 “S” – Speed levels: -3, -2, -1, 1, 2, 3

 “R” – Robotic:
o Bullhorn level: 3 (note: levels 1 and 2 are

deprecated)

 “T” – Time:
o Echo level: 1

o Reverb level: 2

o Flanger level: 3

o Phase level: 4

 “W” – Whisper levels: 1, 2, 3
effLevel Optional. Integer. Effect level must be provided if effect is

provided.

Examples:
sayText(‘Hello World’,3,1,3)
sayText(‘Hello World’,3,1,3,’S’,-1)

setPlayerVolume (level)

Set playback volume, or mute the audio.

Arguments:
level Required. Integer (0-10) – Default = 7.

a value from 0 to 10; 0 is equivalent to mute, 1 is softest,
10 is loudest.

Example:
setPlayerVolume(10)

Note:
 Setting the volume to 0, does not stop playback or the audio stream. It only affects

the audio volume. To stop playback, use the function stopSpeech(). To pause
playback, use the function freezeToggle().

 Calling this function has no effect on some mobile browsers.

© 2023 Oddcast Inc. 6 Version 2.2 12/13/2023

stopSpeech ()

Stop audio playback in progress. If audio is not currently playing, stopSpeech has no
effect (i.e. it does not prevent speech that has not yet begun).

Arguments:
None.

Example:
stopSpeech()

freezeToggle ()

Toggle between the pause and play states. If playback is in progress, it is paused. If
playback is paused, it is resumed from the point it was paused.

Arguments:
None.

Example:
freezeToggle()

setStatus (interruptMode,progressInterval,reserved1,reserved2)

Set several status values which govern various aspects of playback.

Arguments:

interruptMode

Required. Integer (0/1) – Default = 0.
If set to 0 consecutive audio playback function calls
(sayText) are queued for consecutive playback.
If set to 1 current audio is interrupted when sayText is
called.

progressInterval

Required. Non-negative Integer – Default = 0.
The audio progress interval value controls progress
callbacks which take place during playback. The callback
function

vw_audioProgress(percent_played)

© 2023 Oddcast Inc. 7 Version 2.2 12/13/2023

is called during playback if the value of ‘progressInterval’
is non-zero. The non-zero value determines the frequency
of the call.
The value must be an integer greater than or equal to 0.
When greater than 0, the callback
"vw_audioProgress(percent_played)" is triggered at the
frequency specified by the number (in seconds). The
callback returns the percent of the current audio that has
played. Callbacks will continue for all subsequent audios
played once this field is set. Set back to 0 for the callbacks
to cease.

reserved1

Required. Integer. Set to 0.
reserved2

Required. Integer. Set to 0.
Example:

setStatus(1,0,0,0)

Status Callback Functions

Vocalware Callback Functions enable coordination between playback and your page or
application. To set them up, please follow these instructions.

Setting up Vocalware Callback Functions in your HTML page:

Events during playback trigger calls to specific JavaScript functions in your page, if such
functions exist. To take advantage of these calls you must add the appropriate
JavaScript functions to your page. Note that you do not need to add callback functions
which you do not intend to use.

vw_apiLoaded (apiID)

Triggered when the API is fully loaded. Use this callback to verify API is ready, prior to
making any function calls.

Arguments:
apiID The id of the api being loaded.

Example -
function vw_apiLoaded(apiID){

alert(“the API is loaded”);

© 2023 Oddcast Inc. 8 Version 2.2 12/13/2023

}

vw_audioProgress (percentPlayed)

Called during playback, if and only if the ‘progressInterval’ status is set.
vw_audioProgress is repeatedly called at regular intervals during playback. The intervals
are determined according to the value of the ‘progressInterval’ status. See ‘setStatus’ API
call for information about how to set this value.
This callback can be used to enable synchronization between playback and other events
taking place at the same time. For example: highliting text segments, or visual elements
on the page in coordination with speech playback.

Arguments
percentPlayed A value between 0 and 100 which indicated the

proportion of audio already played.
Example -

function vw_audioProgress(percentPlayed) {
}

vw_talkStarted ()

Triggered when the audio playback begins.

Example -
function vw_talkStarted(){
}

vw_talkEnded ()

Triggered when audio playback is done.

Example -
function vw_talkEnded(){
}

vw_audioStarted ()

© 2023 Oddcast Inc. 9 Version 2.2 12/13/2023

Triggered when audio playback begins. Unlike vw_talkStarted() this event is fired for
each audio playback in a sequence.

Example -
function vw_audioStarted(){
}

vw_audioEnded ()

Triggered when audio playback ends. Unlike talkEnded() this event is fired for each
audio playback in a sequence.

Example -
function vw_audioEnded(){
}

vw_apiError (errCode, errDesc)

Triggered when an error is encountered in when processing a sayText call. An error code
and description are returned - as specified in Appendix C.

Arguments
errCode Integer. Error code is returned. See in-stream error codes in

Appendix C.
errDesc String. A Description of the error.

Example -
function vw_apiError(errCode,errDesc) {

alert(“an error has occurred: ”+errCode+" "+errDesc);
}

© 2023 Oddcast Inc. 10 Version 2.2 12/13/2023

The HTTP REST API

Note: This API supports both HTTP and HTTPS protocols. For simplicity only HTTP is
documented. Where you see HTTP mentioned you may assume either HTTP or HTTPS
can be used.

The HTTP GEN Request

This HTTP request supports either GET or POST parameter passing. The syntax example
below describes only the HTTP GET request.

Syntax Example:

http://www.vocalware.com/tts/gen.php?EID=2&LID=1&VID=2&TXT=Test+Message
&EXT=mp3&FX_TYPE=p&FX_LEVEL=1&ACC=8879&API=283475&SESSION=50cdbf7c4e5d11
7dcb2efff424e10054&HTTP_ERR=1&CS=ec1e9c6249980c208186bd64ce8ce6e1

Note: BOLD parameters are required

Parameters Description
EID Engine Id.
LID Language Id.
VID Voice Id.
TXT Text to be used for audio creation (URL Encoded)
EXT ‘mp3’ or ‘ogg’. Default is mp3
FX_TYPE Sound effect type. Default is empty (no effect)
FX_LEVEL Sound effect level. Default is empty (no effect)
ACC Account id
API API id
SESSION Used to verify the session (see Session Verification section)
HTTP_ERR Deprecated – do not provide, ignored if used.
CS Checksum – implemented as an md5 of all above parameter and

your secret phrase

CS = md5 (EID + LID + VID + TXT + EXT + FX_TYPE + FX_LEVEL + ACC + API
+ SESSION + HTTP_ERR + SECRET PHRASE)

Return values:
In case of success, mp3 or ogg binary stream is returned, and the HTTP header status
“200”. The returned audio data is single channel (mono), has a 22Khz sample rate and is
encoded at a 48Kbps bitrate.

© 2023 Oddcast Inc. 11 Version 2.2 12/13/2023

In case of failure, an an HTTP header error status code is returned, as well as an “in-
stream” error code and message.
If the http header status code is different than 200, check the returned data for the In-
Stream code and message for additional information.
See Appendix B: Error Handling & Codes for details.

Session Verification

Session verification is an optional feature designed to protect your account. Here’s how it
works:
 When your application makes an HTTP GEN request, and if the checksum proves to

be authentic, we call a predefined URL on your servers (the “Callback URL”).
 You specify the Callback URL for us to use as part of your Vocalware account

security settings.
 The call is an HTTP POST request, with two parameters – your account ID and the

session ID you provided when making the GEN request.
 When we call you – you may authorize the session, or reject it.
 If the Callback URL for the account is not setup, or if the Session parameter is not

provided, then no callback attempt is made.
 If the Callback URL for the account is not setup, checksum is calculated without the

Session parameter even if present.
 Note: we cache your responses. Subsequent GEN calls that provide the same session

ID will not always generate a callback.

Why use session verification?
If your GEN requests originate from your server, there is no need to setup session
verification. But if you are making GEN requests from a client application (i.e. a web
page) – then session verification is highly advisable to secure your account.

Verification Syntax:
POST request to account Callback URL.

Parameter Description
ACC Account id
SESSION Provided session id

Return Values Description
1 SESSION is valid
0 Error – invalid session

© 2023 Oddcast Inc. 12 Version 2.2 12/13/2023

Example

This example page demonstrates how to put together the HTTP GEN request:
 http://www.vocalware.com/support/rest-api

The Create API Request

This call enables you to programatically create new APIs in your account. This can be
useful for setting up individual users or clients to be able to track their usage via
Vocalware analytics. The effect of this call is the same as logging into your account and
manually creating a new API.
This HTTP request supports either GET or POST parameter passing. The syntax example
below describes only the HTTP GET request.

Syntax Example:

http://www.vocalware.com/tts/createapi.php?ACC=8879&APIName=abcd&APIType=h
&CS=ec1e9c6249980c208186bd64ce8ce6e1

Note: BOLD parameters are required

Parameters Description
ACC Account id
APIName Name of new API to be created. String. Under 20 characters.
APIType Type of new API to be created. "j" - Javascript; "h" - HTTP.
CS Checksum – implemented as an md5 of all above parameter and

you secret phrase

CS = md5 (ACC + APIName + APIType + SECRET PHRASE)

Return values:
In case of success -

if Type = j - Embed code for new API is returned.
if Type = h - ID of new API is returned.

In case of failure, an error code and message are returned. See Appendix B: Error Codes
for more information.

© 2023 Oddcast Inc. 13 Version 2.2 12/13/2023

http://www.vocalware.com/support/rest-api

The Get Stream Balance Request

This call enables you to retrieve the current stream balance from your Vocalware
account. Note that the information is not real-time but updated about every 10 minutes,
This HTTP request supports either GET or POST parameter passing. The syntax example
below describes only the HTTP GET request.

Syntax Example:

http://www.vocalware.com/tts/getbalance.php?
ACC=8879&CS=ec1e9c6249980c208186bd64ce8ce6e1

Note: BOLD parameters are required

Parameters Description
ACC Account id
CS Checksum – implemented as an md5 of all above parameter and

you secret phrase

CS = md5 (ACC + SECRET PHRASE)

Return values:
In case of success -

The number of available streams in your account is returned (integer).

In case of failure, an error code and message are returned. See Appendix B: Error Codes
sub-section for more information.

Generating the Checksum

To calculate the checksum, concatenate all the parameters in the order they appear in this
document and add your ‘Secret Phrase’, which you can find in the ‘security settings’ on
your ‘my APIs’ page.

Apply the md5 one way function to the resulting string, to generate the checksum X, and
append it to the parameter list as CS=X
The checksum is created in the following way:

CS = md5 (EID + LID + VID + TXT + EXT + FX_TYPE + FX_LEVEL + ACC
+ API + SESSION + HTTP_ERR + SECRET PHRASE)

Note:
 TXT value should not be encoded for checksum computation.
 Leading or trailing spaces should be trimmed from the TXT value

© 2023 Oddcast Inc. 14 Version 2.2 12/13/2023

 Optional parameters are to be omitted when computing the checksum if missing,
but included if present.

Checksum Generation PHP Code Example:

//Set optional values to empty if not given.
$ext = isset($_POST['EXT']) &&
in_array(trim(strtolower($_POST['EXT'])), array('mp3','swf')) ?
trim(strtolower($_POST['EXT'])) : '';

$fxType = isset($_POST['FX_TYPE']) && strlen($_POST['FX_TYPE']) > 0 ?
$_POST['FX_TYPE'] : '';

$fxLevel= isset($_POST['FX_LEVEL']) && strlen($_POST['FX_LEVEL']) > 0 ?
$_POST['FX_LEVEL'] : '';

$httpErr= isset($_POST['HTTP_ERR']) && strlen($_POST['HTTP_ERR']) > 0 ?
$_POST['HTTP_ERR'] : '';

//Construct parameters.
$get = 'EID='.$_POST['EID']

.'&LID='.$_POST['LID']

.'&VID='.$_POST['VID']

.'&TXT='.urlencode($_POST['TXT'])

.'&EXT='.$ext

.'&FX_TYPE='.$fxType

.'&FX_LEVEL='.$fxLevel

.'&ACC='.$_POST['ACC']

.'&API='.$_POST['API']

.'&SESSION='.$_POST['SESSION']

.'&HTTP_ERR='.$httpErr;

//Construct checksum
$CS = md5($_POST['EID'].$_POST['LID'].$_POST['VID'].$_POST['TXT']. $ext.
$fxType.$fxLevel.$_POST['ACC']. $_POST['API'].$_POST['SESSION'].
$httpErr.$_POST['SECRET']);

//Construct full URL
$url = 'http://www.vocalware.com/tts/gen.php?' . $get . '&CS=' . $CS;

© 2023 Oddcast Inc. 15 Version 2.2 12/13/2023

Appendix A: Languages and Voices
The following tables list Engine IDs, Language IDs and Voice IDs available for use with
the Vocalware API.

Language ID

Arabic 27

Basque 22

Catalan 5

Chinese 10

Czech 18

Danish 19

Dutch 11

English 1

Esperanto 31

Filipino 32

Finnish 23

French 4

Galician 15

German 3

Greek 8

Hindi 24

Hungarian 29

Indonesian 28

Italian 7

Japanese 12

Korean 13

Norwegian 20

Polish 14

Portuguese 6

Romanian 30

Russian 21

Slovak 37

Spanish 2

Swedish 9

Thai 26

Turkish 16

Ukrainian 40

Vietnamese 41

© 2023 Oddcast Inc. 16 Version 2.2 12/13/2023

 Engine ID = 2

Language Lang.
ID

Voice Name Voice ID Gender Description

English 1 Susan 1 F US

English 1 Dave 2 M US

English 1 Elizabeth 4 F UK

English 1 Simon 5 M UK

English 1 Catherine 6 F UK

English 1 Allison 7 F US

English 1 Steven 8 M US

English 1 Alan 9 M Australian

English 1 Grace 10 F Australian

English 1 Veena 11 F Indian

Spanish 2 Carmen 1 F Castilian

Spanish 2 Juan 2 M Castilian

Spanish 2 Francisca 3 F Chilean

Spanish 2 Diego 4 M Argentine

Spanish 2 Esperanza 5 F Mexican

Spanish 2 Jorge 6 M Castilian

Spanish 2 Carlos 7 M American

Spanish 2 Soledad 8 F American

Spanish 2 Leonor 9 F Castilian

Spanish 2 Ximena 10 F American

German 3 Stefan 2 M

German 3 Katrin 3 F

French 4 Bernard 2 M European

French 4 Jolie 3 F European

French 4 Florence 4 F European

French 4 Charlotte 5 F Canadian

French 4 Olivier 6 M Canadian

Catalan 5 Montserrat 1 F

Catalan 5 Jordi 2 M

Catalan 5 Empar 3 F Valencian

Portuguese 6 Amalia 2 F European

Portuguese 6 Eusebio 3 M European

© 2023 Oddcast Inc. 17 Version 2.2 12/13/2023

Italian 7 Paola 1 F

Italian 7 Silvana 2 F

Italian 7 Valentina 3 F

Italian 7 Luca 5 M

Italian 7 Marcello 6 M

Italian 7 Roberto 7 M

Italian 7 Matteo 8 M

Italian 7 Giulia 9 F

Italian 7 Federica 10 F

Greek 8 Afroditi 1 F

Greek 8 Nikos 3 M

Swedish 9 Annika 1 F

Swedish 9 Sven 2 M

Chinese 10 Linlin 1 F Mandarin

Chinese 10 Lisheng 2 F Mandarin

Dutch 11 Willem 1 M

Dutch 11 Saskia 2 F

Polish 14 Zosia 1 F

Polish 14 Krzysztof 2 M

Galician 15 Carmela 1 F

Turkish 16 Kerem 1 M

Turkish 16 Zeynep 2 F

Turkish 16 Selin 3 F

Danish 19 Frida 1 F

Danish 19 Magnus 2 M

Norwegian 20 Vilde 1 F

Norwegian 20 Henrik 2 M

Russian 21 Olga 1 F

Russian 21 Dmitri 2 M

Finnish 23 Milla 1 F

Finnish 23 Marko 2 M

Arabic 27 Tarik 1 M

Arabic 27 Laila 2 F

Romanian 30 Ioana 1 F

Esperanto 31 Ludoviko 1 M

© 2023 Oddcast Inc. 18 Version 2.2 12/13/2023

Engine ID = 4

Language Lang.
ID

Voice
Name

Voice
ID

Gender Description

English 1 Jill 2 F US

English 1 Tom 3 M US

English 1 Karen 4 F Australian

English 1 Daniel 5 M UK

English 1 Serena 7 F UK

English 1 Moira 8 F Irish

English 1 Sangeeta 9 F Indian

English 1 Lee 10 M Australian

English 1 Samantha 11 F US

English 1 Fiona 12 F Scottish

English 1 Tessa 13 F South African

Spanish 2 Duardo 1 M

Spanish 2 Monica 3 F

Spanish 2 Paulina 4 F Mexican

Spanish 2 Javier 5 M Mexican

German 3 Steffi 1 F

German 3 Yannick 2 M

German 3 Anna 3 F

French 4 Felix 1 M Canadian

French 4 Julie 2 F Canadian

French 4 Sebastien 3 M European

French 4 Virginie 4 F European

French 4 Thomas 5 M European

Catalan 5 Nuria 1 F

Portuguese 6 Raquel 2 F Brazilian

Portuguese 6 Joana 3 F European

Italian 7 Paolo 1 M

Italian 7 Silvia 2 F

Greek 8 Alexandros 1 M

Swedish 9 Alva 1 M

Swedish 9 Oskar 3 M

Chinese 10 Sin-Ji 1 F Cantonese

Chinese 10 Ya-Ling 2 F Taiwanese
Mandarin

Chinese 10 Ting-Ting 4 F Mandarin

Dutch 11 Ellen 1 F Belgian

© 2023 Oddcast Inc. 19 Version 2.2 12/13/2023

Dutch 11 Clair 2 F

Dutch 11 Xander 4 M

Japanese 12 Kyoko 1 F

Korean 13 Narae 1 F

Polish 14 Agata 1 F

Turkish 16 Aylin 1 F

Czech 18 Zuzana 1 F

Danish 19 Ida 1 F

Norwegian 20 Stine 2 F

Russian 21 Milena 2 F

Basque 22 Arantxa 1 F

Finnish 23 Mikko 1 M

Hindi 24 Lekha 1 F

Thai 26 Narisa 1 F

Arabic 27 Maged 1 M

Indonesian 28 Damayanti 1 F

Hungarian 29 Eszter 1 F

Romanian 30 Simona 1 F

Slovak 37 Nadeja 3 F

TTS Engine ID = 6 (Offbeat Voices)

Language Lang.
ID

Voice Name Voice
ID

Gender Description

English 1 Bigdude 1 M

English 1 Giant 2 M

English 1 Male 3 M

English 1 Female 4 F

English 1 Wee One 5 M Child

English 1 Old Woman 6 F

English 1 Robotoid 7 M

English 1 Martian 8 M

English 1 Munchkin 9 M

English 1 Colossus 10 M

English 1 Mellow Yellow I 11 F

English 1 Mellow Yellow II 12 M

English 1 Crisper 13 M

© 2023 Oddcast Inc. 20 Version 2.2 12/13/2023

English 1 Fast Fred 15 M

English 1 Troll 16 M

English 1 Nerd 17 M

English 1 Milk Toast 18 M

English 1 Tipsy 19 M

English 1 Choirboy I 20 M

English 1 Choirboy II 21 M

Engine ID = 7

Language Lang.
ID

Voice
Name

Voice
ID

Gender Description

English 1 Olivia 1 F UK

English 1 Oliver 2 M UK

English 1 Matilda 3 F Australian

English 1 Lakshmi 5 F Indian

English 1 Prashant 6 M Indian

English 1 Brenda 7 F US

German 3 Hilda 1 F

German 3 Heinz 2 M

French 4 Beatrice 1 F

French 4 Antoine 2 M

French 4 Leonie 3 F Canadian

French 4 Gaspard 4 M Canadian

Portuguese 6 Ana 1 F Brasilian

Portuguese 6 Leonor 3 F

Portuguese 6 Tiago 4 M

Italian 7 Bianca 1 F

Italian 7 Alessandro 2 M

Greek 8 Eleni 1 F

Greek 8 Giorgos 2 M

Swedish 9 Astrid 1 F

Swedish 9 Gustav 2 M

Chinese 10 Chia-ling 1 F Taiwanese

Chinese 10 Chia-hao 2 M Taiwanese

Chinese 10 Yan 3 F HK Cantonese

Chinese 10 Chan 4 M HK Cantonese

Dutch 11 Famke 1 F

© 2023 Oddcast Inc. 21 Version 2.2 12/13/2023

Dutch 11 Dirk 2 M

Japanese 12 Himari 1 F

Japanese 12 Kaito 2 M

Polish 14 Danota 1 F

Polish 14 Wojciech 2 M

Turkish 16 Zehra 1 F

Turkish 16 Eymen 2 M

Czech 18 Pavla 1 F

Danish 19 Dagny 1 F

Danish 19 Erik 2 M

Norwegian 20 Dagrun 1 F

Norwegian 20 Lars 2 M

Finnish 23 Sanna 1 F

Hindi 24 Swathi 1 F

Hindi 24 Karan 2 M

Arabic 27 Amina 1 F

Arabic 27 Jamal 2 M

Indonesian 28 Putri 1 F

Indonesian 28 Bintang 2 M

Hungarian 29 Flora 1 F

Hungarian 29 Laszlo 2 M **

Filipino 32 Mayumi 1 F

Filipino 32 Datu 2 M

Slovak 37 Eliska 1 F

Ukrainian 40 Vira 1 F

Vietnamese 41 Nguyet 1 F

Vietnamese 41 Phuong 2 M

© 2023 Oddcast Inc. 22 Version 2.2 12/13/2023

Appendix B: Error Handling & Codes

Two types of error codes are used:
1. “In Stream” error codes are always returned in case of failure. The error code

begins with the string “Error”.
2. (HTTP REST API only) “HTTP Header” status codes are always returned. If

normal completion, “200” is returned.
If the http header status code is different than 200, check the returned
data for the In-Stream code and message for additional information.

The following error codes are used (Note: some of the listed error codes are only relevant to the
HTTP REST API):

In-Stream Error Codes (always returned in case of error)
Error Code Message More Info
100 No data found in request. Missing all request parameters.
101 Missing Required Parameter Missing EID
102 Missing Required Parameter Missing LID
103 Missing Required Parameter Missing VID
104 Missing Required Parameter Missing TXT
105 Missing Required Parameter Missing ACC
106 Missing Required Parameter Missing API
107 Missing Required Parameter Missing CS
108 Missing Required Parameter Missing APIName
109 Missing Required Parameter Missing APIType
201 Unknown account id ACC failed verification
202 Invalid session SESSION failed verification
203 Invalid checksum Checksum failure
204 Authorization failure Verification failed (General)
205 Inactive account Inactive account
206 Invalid API API ID not assigned to account
300 General error General error
301 Too many TTS Requests Too many TTS Requests
302 TTS Failed TTS Failed
303 Too many errors Detailed explanation below*
304 Web Server Error Error description may vary
400 APS Failed Unspecified server processing

error

HTTP Header Status Codes (HTTP REST API only)

Error Code Description
200 Successful TTS request
400 Bad (malformed) request. Modify the request before re-

© 2023 Oddcast Inc. 23 Version 2.2 12/13/2023

submitting.
401 Unauthorized request.
503 The server is temporarily unable to fulfill the request. OK to re-

submit.

* Too many errors (Error Code 303)
Certain invalid inputs are impossible to process and will generate failure. Examples
include providing input text in a language other than the specified language (e.g.
Japanese input for an English voice), or providing long meaningless strings of characters
(e.g. "aaaaaaaaaaaaaaaaaaaaaaaa").
Individual requests of this type may fail with (In-Stream) error code 400 or another code,
and do not affect service. But if an account generates an ongoing torrent of invalid input,
the account will be automatically suspended. Suspension will continue for 30 min at a
time, until the problem is corrected. While suspended, both valid and invalid inputs will
be blocked, and error code 303 returned.
If you receive this error, check your application and examine the syntax of your requests.
A typical error to look for (as stated above) would be providing an incorrect language ID
for the intended input language. Once the problem is corrected on your end, service
should be automatically restored within 30 minutes.

© 2023 Oddcast Inc. 24 Version 2.2 12/13/2023

	Introduction
	Select the API Flavor to Use
	Additional Resources
	The JavaScript API
	Introduction
	Programming for Mobile
	Using your Embed Code
	JavaScript Instructions

	Playback Control Functions
	sayText (txt,voice,lang,engine,[effect], [effLevel])
	setPlayerVolume (level)
	stopSpeech ()
	freezeToggle ()
	setStatus (interruptMode,progressInterval,reserved1,reserved2)

	Status Callback Functions
	Setting up Vocalware Callback Functions in your HTML page:
	vw_apiLoaded (apiID)
	vw_audioProgress (percentPlayed)
	vw_talkStarted ()
	vw_talkEnded ()
	vw_audioStarted ()
	vw_audioEnded ()
	vw_apiError (errCode, errDesc)

	The HTTP REST API
	The HTTP GEN Request
	Session Verification
	Example
	The Create API Request
	The Get Stream Balance Request
	Generating the Checksum

	Appendix A: Languages and Voices
	
	Appendix B: Error Handling & Codes

